
Smart Contract
Security Audit
V1

14/8/2022

Saferico.com

PLSZEN Token Smart Contract

Table of Contents

Table of Contents

Background

Project Information
Token Information
Executive Summary

File and Function Level Report
File in Scope:

Issues Checking Status
Severity Definitions
Audit Findings

Automatic Testing
Testing proofs
Inheritance graph
Call graph

Unified Modeling Language (UML)

Functions Signature
Automatic General Report

Conclusion

Disclaimer

Background
The purpose of the audit was to achieve the following:

● Ensure that the smart contract functions as intended.
● Identify potential security issues with the smart contract.

The information in this report should be used to understand the risk exposure of the smart
contract, and as a guide to improve the security posture of the smart contract by remediating
identified issues.

Project Information

https://rinkeby.etherscan.io/address/0x4a681d6ed9fc42c56caa48172a8a39fe01f067cc

● Platform: Ethereum

● Contract Address: 0x5a24d7129b6f3fcad2220296df28911880ad22b0

● Code Source:

https://etherscan.io/address/0x5a24d7129b6f3fcad2220296df28911880ad22b0#code

Token Information

● Name: PZEN

● Total Supply: 880,000,000

● Holders: 324

● Total transactions: 1491

Contracts address deployed to test net (ETH)
PLSZEN Token smart contract on Eth test net by the auditor to test every function (ETH Test Net)

https://rinkeby.etherscan.io/address/0x4a681d6ed9fc42c56caa48172a8a39fe01f067cc
https://etherscan.io/address/0x5a24d7129b6f3fcad2220296df28911880ad22b0#code

Executive Summary

According to our assessment, the customer`s solidity smart contract is Secured.

Well Secured

Secured
✔

Poor Secured

Insecure

Automated checks are with remix IDE. All issues were performed by the team, which included the
analysis of code functionality, manual audit found during automated analysis were manually
reviewed and applicable vulnerabilities are presented in the audit overview section. The general
overview is presented in the Project Information section and all issues found are located in the
audit overview section.

Team found 0 critical, 0 high, 0 medium, 3 low, 0 very low-level issues and 1 note in all solidity files of the
contract.

The files:

PZENDEPLOYERcontract.sol

File and Function Level Report

File in Scope:

Contract Name SHA
256
hash

Contract Address

PZENDEPLOYERcontra
ct.sol

9e1f0fac21bf723551f8d368
8a12ca063dbeae17269c82a
13f0a690b705be61d

0x5a24d7129b6f3fcad2220296df28911880ad22
b0

● Contract: PZENDEPLOYERcontract
● Inherit: PZEN
● Observation: All passed including security check
● Test Report: passed
● Score: passed
● Conclusion: passed

Function Test
Result

Type /
Return Type

Score

name ✔ Read / public Passed

symbol ✔ Read / public Passed

decimals ✔ Read / public Passed

totalSupply ✔ Read / public Passed

allowance ✔ Read / public Passed

balanceOf ✔ Read / public Passed

Owner ✔ Read / public Passed

isExcludedFromFees ✔ Read / public Passed

getUnlockTime ✔ Read / public Passed

manger ✔ Read / public Passed

isExcludedFromReward ✔ Read / public Passed

reflectionFromToken ✔ Read / public Passed

approve ✔ Write / public Passed

TransferFrom ✔ Write / public Passed

increaseAllowance ✔ Write / public Passed

transfer ✔ Write / public Passed

decreaseAllowance ✔ Write / public Passed

withdrawLockedEth ✔ Write / public Passed

lock ✔ Write / public Passed

excludeFromFees ✔ Write /
public

Passed

unLock ✔ Write /
public

Passed

includeInReward ✔ Write / public Passed

renounceOwnership ✔ Write / public Passed

transferOwnership ✔ Write / public Passed

burn ✔ Write / public Passed

excludeFromReward ✔ Write / public Passed

setPreseableEnabled ✔ Write / public Passed

setRouterAddress ✔ Write / public Passed

setSwapAndLiquifyEnabl
ed

✔ Write / public Passed

transferManagement ✔ Write / public Passed

Issues Checking Status

No. Issue
Description

Checking
Status

1 Compiler warnings. Passed

2 Race conditions and
Reentrancy. Cross-function
race conditions.

Passed

3 Possible delays in data delivery. Passed

4 Oracle calls. Passed

5 Design Logic. Passed

6 Timestamp dependence. Passed with
notes

7 Integer Overflow and Underflow. Passed

8 DoS with Revert. Passed

9 DoS with block gas limit. Passed with
notes

10 Methods execution permissions. Passed

11 Economy model. If application logic is based on
an incorrect economic model, the application
would not function correctly and participants
would incur financial losses.
This type of issue is most often found in
bonus rewards systems, Staking and
Farming contracts, Vault and Vesting
contracts, etc.

Passed

12 The impact of the exchange rate on the logic. Passed

13 Private user data leaks. Passed

14 Malicious Event log. Passed

15 Scoping and Declarations. Passed

16 Uninitialized storage pointers. Passed

17 Arithmetic accuracy. Passed

Severity Definitions

Risk
Level

Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to tokens loss etc.

High High-level vulnerabilities are difficult to exploit;
however, they also have significant impact on smart
contract execution,
e.g. public access to crucial functions

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low Low-level vulnerabilities are mostly related to
outdated, unused etc. code snippets, that can’t have
significant impact on execution

Note Lowest-level vulnerabilities, code style violations and
info statements can’t affect smart contract execution
and can be ignored.

Audit Findings
Critical:

No Critical severity vulnerabilities were found.

High:

No High severity vulnerabilities were found.

Medium:

No Medium severity vulnerabilities were found.

Low:

#Pragma version not fixed
Description

It is a good practice to lock the solidity version for a live deployment (use 0.8.15 instead of ^0.8.4).
Contracts should be deployed with the same compiler version and flags that they have been tested the most
with. Locking the pragma helps ensure that contracts do not accidentally get deployed using, for example,
the latest compiler which may have higher risks of undiscovered bugs. Contracts may also be deployed by
others and the pragma indicates the compiler version intended by the original authors.

Remediation
Remove the ^ sign to lock the pragma version.

Status: Acknowledged

#Use of block.timestamp for comparisons

Description

The value of block.timestamp can be manipulated by the miner.
Conditions with strict equality are difficult to achieve -
block.timestamp

Remediation

Avoid use of block.timestamp

Status: Acknowledged

#Owner privileges (In the period when the owner isn’t renounced)

Description

The owner can lock and unlock the smart
contract. The owner can enable or disable the
trade.
The owner can include / exclude any address from Fees or Reward.

function setSwapAndLiquifyEnabled(bool enabled) external onlyManager {

swapAndLiquifyEnabled = enabled;
emit SwapAndLiquifyEnabledUpdated(swapAndLiquifyEnabled);

}
function setExcludedFromFee(address account, bool value) external onlyOwner {

_isExcludedFromFee[account] = value; }
function excludeFromReward(address account) external onlyOwner() {

require(!_isExcludedFromRewards[account], "Account is not included");
_exclude(account);

}
function includeInReward(address account) external onlyOwner() {

require(_isExcludedFromRewards[account], "Account is not excluded");
for (uint256 i = 0; i < _excluded.length; i++) {

if (_excluded[i] == account) {
_excluded[i] = _excluded[_excluded.length - 1];
_balances[account] = 0;
_isExcludedFromRewards[account] = false;
_excluded.pop();
break;}}}

function lock(uint256 time) public virtual onlyOwner {
_previousOwner = _owner;
_owner = address(0);
_lockTime = block.timestamp + time;
emit OwnershipTransferred(_owner, address(0));

}
function unlock() public virtual {

require(_previousOwner == msg.sender, "Only the previous owner can unlock
onwership");

require(block.timestamp > _lockTime , "The contract is still locked");
emit OwnershipTransferred(_owner, _previousOwner);
_owner = _previousOwner;

}

Remediation

Make these functions internal in next version or the team should announce any
change in fees and give investors time if they want to use the old fees.
N.B: This issue is common to the majority of rewards smart contracts.

Status: Acknowledged, DAO to be connected.

Very Low:

No Very Low severity vulnerabilities were found.

Notes:

Constant calculations in the contract

Description

uint16 internal constant FEES_DIVISOR = 10**4;

uint256 internal constant ZEROES = 10**DECIMALS;
uint256 internal constant TOTAL_SUPPLY = 880 * 10**6 *10**9;

Recommendation

Replace the initialization as

uint16 internal constant FEES_DIVISOR = 100000;

uint256 internal constant ZEROES = 10000000000;
uint256 internal constant TOTAL_SUPPLY = 880000000000000000;

Status Acknowledged.

Automatic Testing
1- Check for security

2- SOLIDITY STATIC ANALYSIS

3- Inheritance graph

4- SOLIDITY UNIT TESTING

5- Call graph

Unified Modeling Language (UML)

Functions signature

Sighash | Function Signature
========================
16279055 => isContract(address)
39509351 => increaseAllowance(address,uint256)
18160ddd => totalSupply()
70a08231 => balanceOf(address)
a9059cbb => transfer(address,uint256)
dd62ed3e => allowance(address,address)
095ea7b3 => approve(address,uint256)
23b872dd => transferFrom(address,address,uint256)
06fdde03 => name()
95d89b41 => symbol()
313ce567 => decimals()
119df25f => _msgSender()
8b49d47e => _msgData()
771602f7 => add(uint256,uint256)
b67d77c5 => sub(uint256,uint256)
c8a4ac9c => mul(uint256,uint256)
a391c15b => div(uint256,uint256)
f43f523a => mod(uint256,uint256)
e31bdc0a => sub(uint256,uint256,string)
24a084df => sendValue(address,uint256)
a0b5ffb0 => functionCall(address,bytes)
241b5886 => functionCall(address,bytes,string)
2a011594 => functionCallWithValue(address,bytes,uint256)
d525ab8a => functionCallWithValue(address,bytes,uint256,string)
c21d36f3 => functionStaticCall(address,bytes)
dbc40fb9 => functionStaticCall(address,bytes,string)
ee33b7e2 => functionDelegateCall(address,bytes)
57387df0 => functionDelegateCall(address,bytes,string)
18c2c6a2 => _verifyCallResult(bool,bytes,string)
8da5cb5b => owner()
715018a6 => renounceOwnership()
f2fde38b => transferOwnership(address)
602bc62b => getUnlockTime()
dd467064 => lock(uint256)
a69df4b5 => unlock()
481c6a75 => manager()
e4edf852 => transferManagement(address)
c9c65396 => createPair(address,address)
c45a0155 => factory()
ad5c4648 => WETH()
f305d719 => addLiquidityETH(address,uint256,uint256,uint256,address,uint256)
791ac947 =>

swapExactTokensForETHSupportingFeeOnTransferTokens(uint256,uint256,address[],addres
s,uint256)
346a695c => _addFee(FeeType,uint256,address)
e694db42 => _addFees()
2ff46c73 => _getFeesCount()
44a297dc => _getFeeStruct(uint256)
88a60fa8 => _getFee(uint256)
17d5a3fd => _addFeeCollectedAmount(uint256,uint256)
8d11551e => getCollectedFeeTotal(uint256)
74778cdc => setPreseableEnabled(bool)
42966c68 => burn(uint256)
099bade9 => _burnTokens(address,uint256,uint256)

a457c2d7 => decreaseAllowance(address,uint256)
88f82020 => isExcludedFromReward(address)
4549b039 => reflectionFromToken(uint256,bool)
2d838119 => tokenFromReflection(uint256)
52390c02 => excludeFromReward(address)
d2480b0c => _exclude(address)
3685d419 => includeInReward(address)
6612e66f => setExcludedFromFee(address,bool)
5342acb4 => isExcludedFromFee(address)
104e81ff => _approve(address,address,uint256)
81c4322b => _isUnlimitedSender(address)
32049b2c => _isUnlimitedRecipient(address)
30e0789e => _transfer(address,address,uint256)
20d6115d => _transferTokens(address,address,uint256,bool)
58cf1a0b => _takeFees(uint256,uint256,uint256)
ddb595f3 => _getValues(uint256,uint256)
0ec1ce16 => _getCurrentRate()
97a9d560 => _getCurrentSupply()
d44bed71 => _beforeTokenTransfer(address,address,uint256,bool)
1202591c => _getSumOfFees(address,uint256)
52854cce => _isV2Pair(address)
cee8c7b0 => _redistribute(uint256,uint256,uint256,uint256)
f9d5a849 => _takeTransactionFees(uint256,uint256)
049498c0 => initializeLiquiditySwapper(Env,uint256,uint256)
dbc55a7e => liquify(uint256,address)
1e4ed1de => _setRouterAddress(address)
7bf54cb9 => _swapAndLiquify(uint256)
7f90ffe4 => _swapTokensForEth(uint256)
9e8af2af => _addLiquidity(uint256,uint256)
41cb87fc => setRouterAddress(address)
c49b9a80 => setSwapAndLiquifyEnabled(bool)
b7671a0d => withdrawLockedEth(address)
238c12a9 => _approveDelegate(address,address,uint256)
577ca49c => _getAntiwhaleFees(uint256,uint256)
d05e5e34 => _burn(uint256,uint256,uint256,uint256)
8a6bd23b => _takeFee(uint256,uint256,uint256,address,uint256)
de2637aa => _takeFeeToETH(uint256,uint256,uint256,address,uint256)

Automatic general report

Files Description Table

| File Name | SHA-1 Hash |
| | |
| /Users/macbook/Desktop/smart contracts/PZENDEPLOYERcontract.sol |
3d6bf771b69c7e5c563630623fa6ee6e979ac572 |

Contracts Description Table

| Contract | Type | Bases | |
|
|: :|:

:|
:|: :|: :|:

| └ | **Function Name** | **Visibility** | **Mutability** |
Modifiers |
IERC20	Interface			
└	totalSupply	External ❗		NO❗
└	balanceOf	External ❗		NO❗
└	transfer	External ❗	🛑🛑	NO❗
└	allowance	External ❗		NO❗
└	approve	External ❗	🛑🛑	NO❗
└	transferFrom	External ❗	🛑🛑	NO❗
IERC20Metadata	Interface	IERC20		
└	name	External ❗		NO❗
└	symbol	External ❗		NO❗
└	decimals	External ❗		NO❗
Context	Implementation			
└	_msgSender	Internal 🔒🔒		
└	_msgData	Internal 🔒🔒		
SafeMath	Library			
└	add	Internal 🔒🔒		
└	sub	Internal 🔒🔒		
└	mul	Internal 🔒🔒		
└	div	Internal 🔒🔒		
└	mod	Internal 🔒🔒		
└	sub	Internal 🔒🔒		
Address	Library			
└				
└				
isContract | Internal 🔒🔒 | | |
sendValue | Internal 🔒🔒 | 🛑🛑 | |

| └ | functionCall | Internal 🔒🔒 | 🛑🛑 | |
|
|
└
└
|
|
functionCall | Internal 🔒🔒 | 🛑🛑
functionCallWithValue | Internal

| |
🔒🔒 |

🛑🛑

| |

└	functionCallWithValue	Internal 🔒🔒	🛑🛑	
└	functionStaticCall	Internal 🔒🔒		
└	functionStaticCall	Internal 🔒🔒		
└	functionDelegateCall	Internal 🔒🔒	🛑🛑	
└	functionDelegateCall	Internal 🔒🔒	🛑🛑	
└	_verifyCallResult	Private 🔐🔐		

| **Ownable** | Implementation | Context |||

└	<Constructor>	Public ❗	🛑🛑	NO❗
└	owner	Public ❗		NO❗
└	renounceOwnership	Public ❗	🛑🛑	onlyOwner
└	transferOwnership	Public ❗	🛑🛑	onlyOwner
└	getUnlockTime	Public ❗		NO❗
└	lock	Public ❗	🛑🛑	onlyOwner
└	unlock	Public ❗	🛑🛑	NO❗
Manageable	Implementation	Context		
└	<Constructor>	Public ❗	🛑🛑	NO❗
└	manager	Public ❗		NO❗
└	transferManagement	External ❗	🛑🛑	onlyManager
IPancakeV2Factory	Interface			
└	createPair	External ❗	🛑🛑	NO❗
IPancakeV2Router	Interface			
└	factory	External ❗		NO❗
└	WETH	External ❗		NO❗
└	addLiquidityETH	External ❗	💵💵	NO❗
└	swapExactTokensForETHSupportingFeeOnTransferTokens	External ❗	🛑🛑	NO❗
Tokenomics	Implementation			
└	<Constructor>	Public ❗	🛑🛑	NO❗
└	_addFee	Private 🔐🔐	🛑🛑	
└	_addFees	Private 🔐🔐	🛑🛑	
└	_getFeesCount	Internal 🔒🔒		
└	_getFeeStruct	Private 🔐🔐		
└	_getFee	Internal 🔒🔒		
└	_addFeeCollectedAmount	Internal 🔒🔒	🛑🛑	
└	getCollectedFeeTotal	Internal 🔒🔒		
Presaleable	Implementation	Manageable		
└	setPreseableEnabled	External ❗	🛑🛑	onlyManager
BaseRfiToken	Implementation	IERC20, IERC20Metadata, Ownable, Presaleable,		
Tokenomics				
└	<Constructor>	Public ❗	🛑🛑	NO❗
└	name	External ❗		NO❗
└	symbol	External ❗		NO❗
└	decimals	External ❗		NO❗
└	totalSupply	External ❗		NO❗
└	balanceOf	Public ❗		NO❗
└	transfer	External ❗	🛑🛑	NO❗
└	allowance	External ❗		NO❗
└	approve	External ❗	🛑🛑	NO❗
└	transferFrom	External ❗	🛑🛑	NO❗
└	burn	External ❗	🛑🛑	NO❗
└	_burnTokens	Internal 🔒🔒	🛑🛑	
└	increaseAllowance	Public ❗	🛑🛑	NO❗
└	decreaseAllowance	Public ❗	🛑🛑	NO❗
└	isExcludedFromReward	External ❗		NO❗
└	reflectionFromToken	External ❗		NO❗
└	tokenFromReflection	Internal 🔒🔒		
└	excludeFromReward	External ❗	🛑🛑	onlyOwner
└	_exclude	Internal 🔒🔒	🛑🛑	
└	includeInReward	External ❗	🛑🛑	onlyOwner
└	setExcludedFromFee	External ❗	🛑🛑	onlyOwner

└	isExcludedFromFee	Public ❗		NO❗
└	_approve	Internal 🔒🔒	🛑🛑	
└	_isUnlimitedSender	Internal 🔒🔒		
└	_isUnlimitedRecipient	Internal 🔒🔒		
└	_transfer	Private 🔐🔐	🛑🛑	
└	_transferTokens	Private 🔐🔐	🛑🛑	
└	_takeFees	Private 🔐🔐	🛑🛑	
└	_getValues	Internal 🔒🔒		
└	_getCurrentRate	Internal 🔒🔒		
└	_getCurrentSupply	Internal 🔒🔒		
└	_beforeTokenTransfer	Internal 🔒🔒	🛑🛑	
└	_getSumOfFees	Internal 🔒🔒		
└	_isV2Pair	Internal 🔒🔒		
└	_redistribute	Internal 🔒🔒	🛑🛑	
└	_takeTransactionFees	Internal 🔒🔒	🛑🛑	
Liquifier	Implementation	Ownable, Manageable		
└	<Receive Ether>	External ❗	💵💵	NO❗
└	initializeLiquiditySwapper	Internal 🔒🔒	🛑🛑	
└	liquify	Internal 🔒🔒	🛑🛑	
└	_setRouterAddress	Private 🔐🔐	🛑🛑	
└	_swapAndLiquify	Private 🔐🔐	🛑🛑	lockTheSwap
└	_swapTokensForEth	Private 🔐🔐	🛑🛑	
└	_addLiquidity	Private 🔐🔐	🛑🛑	
└	setRouterAddress	External ❗	🛑🛑	onlyManager
└	setSwapAndLiquifyEnabled	External ❗	🛑🛑	onlyManager
└	withdrawLockedEth	External ❗	🛑🛑	onlyManager
└	_approveDelegate	Internal 🔒🔒	🛑🛑	
Antiwhale	Implementation	Tokenomics		
└	_getAntiwhaleFees	Internal 🔒🔒		
PZEN	Implementation	BaseRfiToken, Liquifier, Antiwhale		
└	<Constructor>	Public ❗	🛑🛑	NO❗
└	_isV2Pair	Internal 🔒🔒		
└	_getSumOfFees	Internal 🔒🔒		
└	_beforeTokenTransfer	Internal 🔒🔒	🛑🛑	
└	_takeTransactionFees	Internal 🔒🔒	🛑🛑	
└	_burn	Private 🔐🔐	🛑🛑	
└	_takeFee	Private 🔐🔐	🛑🛑	
└	_takeFeeToETH	Private 🔐🔐	🛑🛑	
└	_approveDelegate	Internal 🔒🔒	🛑🛑	
PZENDEPLOYERcontract	Implementation	PZEN		
└	<Constructor>	Public ❗	🛑🛑	PZEN

Legend

Symbol	Meaning
: :	
🛑🛑	Function can modify state
💵💵	Function is payable

Conclusion
The contracts are written systematically. Team found no critical issues.Good to go
for production.

Since possible test cases can be unlimited and developer level documentation (code
flow diagram with function level description) was not provided, for such an extensive
smart contract protocol, we provide no guarantee of future outcomes. We have used
all the latest static tools and manual observations to cover maximum possible test
cases to scan everything.

Security state of the reviewed contract is “Secured”.

✔No mint function.
✔No volatile code.
✔ No high severity issues were found.

Disclaimer

This is a limited report on our findings based on our analysis, in accordance with good industry
practice as of the date of this report, in relation to cybersecurity vulnerabilities and issues in the
framework and algorithms based on smart contracts, the details of which are set out in this report.
In order to get a full view of our analysis, it is crucial to read the full report. While we have done
our best in conducting our analysis and producing this report, it is important to note that one
should not rely solely on this report; claims cannot be made against the team on the basis of what
the report covers or how it was produced. It is important to conduct independent research before
making any decisions. More detail on this is given in the below disclaimer.

By reading this report or any part of it, you agree to the terms of this disclaimer. If you
do not agree to the terms, then please immediately cease reading this report, and
delete and destroy any and all copies of this report downloaded and/or printed by you.
This report is provided for information purposes only and on a non-reliance basis, and
does not constitute investment advice. No one shall have any right to rely on the report
or its contents, and Saferico and its affiliates (including holding companies,
shareholders, subsidiaries, employees, directors, officers and other representatives)
(Saferico) owe no duty of care towards you or any other person, nor does Saferico
make any warranty or representation to any person on the accuracy or completeness of
the report. The report is provided "as is", without any conditions, warranties or other
terms of any kind except as set out in this disclaimer, and Saferico hereby excludes all
representations, warranties, conditions and other terms (including, without limitation, the
warranties implied by law of satisfactory quality, fitness for purpose and the use of
reasonable care and skill) which, but for this clause, might have effect in relation to the
report. Except and only to the extent that it is prohibited by law, Saferico hereby
excludes all liability and responsibility, and neither you nor any other person shall have
any claim against Saferico, for any amount or kind of loss or damage that may result to
you or any other person (including without limitation, any direct, indirect, special,
punitive, consequential or pure economic loss or damages, or any loss of income,
profits, goodwill, data, contracts, use of money, or business interruption, and whether in
delict, tort (including without limitation negligence), contract, breach of statutory duty,
misrepresentation (whether innocent or negligent) or otherwise under any claim of any
nature whatsoever in any jurisdiction, in any way arising from or connected with this
report and the use, inability to use or the results of use of this report, and any reliance
on this report. The analysis of the security is purely based on the smart contracts alone.
No applications or operations were reviewed for security. No product code has been
reviewed.

	Table of Contents
	Table of Contents Background Project Information
	File and Function Level Report File in Scope:

	Background
	Project Information
	Executive Summary

	File and Function Level Report
	File in Scope:

	Issues Checking Status
	Severity Deﬁnitions
	Critical:
	High:
	Medium:
	Low:
	Very Low:
	Notes:

	Unified Modeling Language (UML)
	Automatic general report

	Conclusion
	Disclaimer

